CHAPTER 23
INFECTIONS OF THE
GENITOURINARY SYSTEM

WHY IS THIS IMPORTANT?

◆ The genitourinary tract is a body system that is open to the outside world
◆ Many pathogens use this portal of entry and as a health care professional you will see many infections here

OVERVIEW

◆ Many infections occur in the urinary and reproductive systems
 ◆ Open to the outside environment
 ◆ Some urinary system infections begin in the urethra
 ◆ Travel up to the bladder
 ◆ Can reach the kidneys
 ◆ Outcome can be severe and even life-threatening
 ◆ Variety of reproductive system infections
 ◆ Many are sexually transmitted (STDs)
OVERVIEW

Infections of the Genitourinary System

URINARY TRACT INFECTIONS

Urine is essentially sterile
- Presence of pathogens or inflammatory cells indicates a urinary tract infection (UTI)

UTIs are more common in women
- Pathogen is usually bacterial or yeast

URINARY TRACT INFECTIONS

- UTIs are serious problems in hospitals
- Usually associated with indwelling catheters
- Bacteria or yeast ascend the outside of the catheter and reach the bladder
- Antibiotics should be given following removal of the catheter

URINARY TRACT INFECTIONS

- Urine ideally flows in one direction
- Can be a reflux action
- Pathogens can use this to infect the urinary tract
- UTIs are named according to the place of infection
 - Urethritis – in the urethra
 - Cystitis – in the bladder
 - Nephritis – in the kidneys
 - Prostatitis – in the prostate (males only)

ANATOMY OF URINARY SYSTEM

BACTERIAL UTIs

- A few bacteria routinely enter the bladder
 - From external environment
 - From blood passing through the renal artery
 - Normally flushed out during urination
- Prevalence of bacterial UTIs varies with age
 - First three months of life – more common in males
 - Preschool age – more common in females
BACTERIAL UTIs

- Anatomical changes associated with aging predispose to chronic bacteria in urine
 - Often asymptomatic
 - Enlargement of the prostate (in males) increases the incidence of UTIs
 - Gynecological or prostatic surgery, incontinence, and chronic catheterization increase the rates of bacterial UTIs 30-40%

- Problem of nosocomial bacterial UTIs is complicated by antibiotic-resistant bacteria found in hospitals
 - 7 million cases of cystitis in the US
 - 250,000 cases of nephritis in the US
 - *E. coli.* accounts for 90% of both

<table>
<thead>
<tr>
<th>Organism</th>
<th>Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Escherichia coli</td>
<td>trimethoprim, cephalaxin, gentamicin</td>
</tr>
<tr>
<td>Proteus spp.</td>
<td>trimethoprim, cephalaxin, gentamicin</td>
</tr>
<tr>
<td>Klebsiella spp.</td>
<td>trimethoprim, cephalaxin, gentamicin</td>
</tr>
<tr>
<td>Pseudomonas aeruginosa</td>
<td>ciprofloxacin, gentamicin</td>
</tr>
<tr>
<td>Enterococcus spp.</td>
<td>amoxilillin, vancomycin</td>
</tr>
<tr>
<td>Staphylococcus aureus</td>
<td>trimethoprim, cephalaxin, gentamicin</td>
</tr>
<tr>
<td>Staphylococcus negative</td>
<td>trimethoprim, cephalaxin, gentamicin</td>
</tr>
</tbody>
</table>
BACTERIAL UTIs: Pathogenesis

- Infection occurs when bacteria get into the urine and remain
- All portions of the urinary tract connected to one another
 - Infection is spread easily

- Pathogenesis in these infections is a result of anatomy
 - Males have some protection from a longer urethra
 - Shorter female urethra means a shorter route to bladder for bacteria
 - Female urethra ends in the vaginal area
 - Colonized by a variety of bacteria as part of normal flora
 - Many can initiate a UTI

- Uropathogenic *E. coli* is responsible for most bladder infections
 - Most potent of all the pathogens that cause UTIs
 - Pathogenicity is associated with virulence factors
 - α hemolysins
 - Specialized pili – P pili
 - Bind to receptor cells of urinary tract
 - Causes successful colonization
BACTERIAL UTIs: Pathogenesis

Clinical sequelae vary
- More than 50% do not produce recognizable illness
- Those that cause symptoms are grouped by the area they affect

BACTERIAL UTIs: Pathogenesis

Urethritis and cystitis
- Dysuria, frequency, and urgency
- Low back pain, abdominal pain, and tenderness over bladder
- Urine may be cloudy

Cystitis has more acute onset and more severe symptoms
- Presence of bacteria and blood in urine

Reprinted with permission from Clinical Bacteriology, by J. Keith Struthers and Roger P. Westran, © 2003 ASM Press.
BACTERIAL UTIs: Pathogenesis

- **Nephritis**
 - Pain in the flanks
 - Fever above 38.3°C
 - Severe cases can cause septic shock
 - Usually no damage to kidney function

- **Prostatitis**
 - Pain in the lower back, perirectal area, and testicles
 - Can be high fever, chills, and symptoms similar to bacterial cystitis
 - Inflammatory swelling can lead to obstruction of the urethra
 - Retention of urine can cause abscess formation, epididymitis, and seminal vesiculitis
 - Acute prostatitis usually seen in young men
 - Chronic form in the elderly and usually with catheterization

- **Diagnosis of a bacterial UTI based on examination of urine**
 - Requires collection of a clean voided midstream sample
 - In 90% of patients UTIs are identified as pyuria
 - More than 10 white blood cells per cubic millimeter of urine
 - Presence of white blood cell casts in the urine
 - Most positive way to confirm is a Gram-stain of a urine sample
 - One bacterium per oil-immersion field indicates infection
BACTERIAL UTIs: Treatment

- Trimethoprim is most commonly used
 - Alone or in combination with sulfamethoxazole or a fluoroquinolone
 - Treatment is best guided based on antimicrobial susceptibility tests
 - Duration of treatment depends on severity of bacterial infection
 - Success of treatment is determined by a culture of urine two weeks after therapy

BACTERIAL INFECTIONS OF THE REPRODUCTIVE SYSTEM

- Most infections in the reproductive system are sexually transmitted
 - Most often affect women
 - More sexual promiscuity = more likely to contract an STD
- Many infected individuals will not seek medical help
 - Because they are asymptomatic
- Infections are caused by a wide range of organisms

BACTERIAL INFECTIONS OF THE REPRODUCTIVE SYSTEM

- STDs can cause:
 - Urethritis
 - Cervicitis
 - Prostatitis
 - Pharyngitis
 - Pelvic Inflammatory Disease (PID)
BACTERIAL INFECTIONS OF THE REPRODUCTIVE SYSTEM

- PID can also result from gonococcal or chlamydial infection
 - Can lead to infertility and ectopic pregnancy
- Infections can infect fetus and newborn
 - Expectant mothers routinely screened for STD

SEXUALLY TRANSMITTED INFECTIONS CAN BE LOCALIZED OR SYSTEMIC
- Localized: most common
- Localized infections cause inflammatory symptoms
 - May not be noticed by patient
- Deeper tissues and structures can be affected
 - Epididymitis and salpingitis
 - These can become systemic
COMMON CLINICAL CONDITIONS ASSOCIATION WITH STDs

- Genital ulcers
- Sexually transmitted urethritis
- Epididymis
- Cervicitis
- Vaginitis
- Lymphadenitis

GENITAL ULCERS

- Lesions on the genitalia
 - Pustules evolve into ulcers
 - Different infections cause different types of ulcer

GENITAL ULCERS

<table>
<thead>
<tr>
<th>Infection</th>
<th>Type of ulcer</th>
<th>Treatment of normal length ulcers</th>
<th>Duration and normalisation</th>
<th>Healing consistency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Genital herpes</td>
<td>Ulcer</td>
<td>Amoxicillin</td>
<td>Less than 5 days</td>
<td>Poor</td>
</tr>
<tr>
<td>Lupus</td>
<td>Ulcer</td>
<td>Doxycycline</td>
<td>7-10 days</td>
<td>Good</td>
</tr>
</tbody>
</table>
SEXUALLY TRANSMITTED URETHRITIS

- Presents as dysuria or urethral discharge or both
- Caused by *N. gonorrhoeae* and *C. trachomatis*
 - Many cases involve both
- Diagnosis of gonococcal urethritis usually requires culture
 - Can be done by direct microscopic examination
 - DNA analysis also used

SEXUALLY TRANSMITTED URETHRITIS

- Detection of *C. trachomatis* requires DNA amplification analysis
- Successful treatment depends on:
 - Agent causing infection
 - Whether the infection has spread

EPIDIDYMITIS

- Unilateral swelling of the epididymis
 - Usually quite painful
 - Presents with fever and swelling of the testicles
- Two bacteria implicated:
 - *N. gonorrhoeae*
 - *C. trachomatis*
CERVICITIS

- Etiology can vary
 - Usually caused by *N. gonorrhoeae* and *C. trachomatis*
- May involve mucopurulent vaginal discharge
 - Inflammation of the cervix
 - Phagocytic leukocytes found in discharge

VAGINITIS

- Bacterial is the most common type of vaginitis
 - Associated with overgrowth of *Gardnerella vaginalis*
- Can be homogeneous yellowish discharge
 - Stays adhered to vaginal wall
 - Clue cells found in discharge covered with bacteria
- Discharge can occur alone or in connection with salpingitis, endometritis, or cervicitis

PELVIC INFLAMMATORY DISEASE (PID)

- Usually presents with abdominal pain
- 50% of cases caused by *N. gonorrhoeae*
- Can be non-gonococcal and caused by a combination of bacteria
 - More complex than gonococcal
 - Usually milder
LYMPHADENITIS

- Inflammation of lymph nodes
- Seen in several sexually transmitted infections
 - Especially herpes and lymphogranuloma venereum
- Usually begins as a small genital ulcer that is frequently unnoticed
- First evidence is usually a tender swollen lymph node in groin

COMMON SEXUALLY TRANSMITTED INFECTIONS

- Three of the most common bacterial sexually transmitted infections:
 - Syphilis
 - Gonorrhea
 - Non-gonococcal urethritis

SYPHILIS

- Earliest recorded sexually transmitted infection
 - First described in 1600s
- Caused by *Treponema pallidum*
 - Slim spirochete
 - Slow rotating motility
 - Cannot be grown on bacterial media
 - Can be grown in mammalian cell cultures
SYPHILIS

- Treponema pallidum
 - Extremely susceptible to any changes in its environment
 - Dies rapidly if dehydrated or heated
 - Very sensitive to detergents and disinfectants
 - Transmission restricted to direct contact
 - Exclusively a human pathogen

SYPHILIS

- Infection is acquired by sexual contact
 - Possibility of transmission through the sharing of contaminated needles
 - Also transplacentally
- Still a major health problem
 - More than 12 million cases each year

SYPHILIS: Pathogenesis

- No animal model
 - Pathogenesis extrapolated from observations
- Spirochetes reach the subepithelial tissues by two means:
 - Through breaks in skin
 - Passing between epithelial cells of the mucous membranes
- Little or no inflammatory response during the initial stage

Infection is acquired by sexual contact
 - Possibility of transmission through the sharing of contaminated needles
 - Also transplacentally
- Still a major health problem
 - More than 12 million cases each year

No animal model
 - Pathogenesis extrapolated from observations
- Spirochetes reach the subepithelial tissues by two means:
 - Through breaks in skin
 - Passing between epithelial cells of the mucous membranes
- Little or no inflammatory response during the initial stage
SY Philis: Pathogenesis

- A lesion develops and small arterioles begin to swell
 - Endothelial cells proliferate
 - Reduces blood flow
 - Necrotic ulceration seen at the primary infection site
- Granulocytes, lymphocytes, monocytes, and plasma cells surround the affected blood vessels

SY Philis: Pathogenesis

- Primary lesion heals spontaneously
 - Bacteria have already spread to other locations through blood and lymph
- Syphilis then goes silent before the secondary stage develops
 - Also silent period before tertiary stage
- Treponema binds to immunoglobulins and complement proteins
 - Could be camouflage to protect the bacterium
- Treponema does not produce virulence factors as disease progresses

SY Philis: Pathogenesis

- Several clinically defined stages:
 - Primary
 - Secondary
 - Latent
 - Tertiary
 - Congenital
SYPHILIS:
Primary Syphilis

- Associated with appearance of primary syphilitic lesion
 - Starts as a papule and becomes an ulcer
- Ulcer usually located on external genitalia or cervix
 - Also found in the oral cavity or anus
- Ulcer remains painless – a chancre

SYPHILIS:
Primary Syphilis

- Incubation time to appearance of the chancre is 3 weeks
 - Chancre will disappear in 4-6 weeks
- Lymphadenopathy occurs within 1 week of the initial lesion
 - Can persist for months
- Primary syphilis can cause unilateral or bilateral enlargement of lymph nodes of the groin
SYMPHILIS: Secondary Syphilis

- Also known as disseminated syphilis
- Develops 2-8 weeks after the chancre disappears
- Characterized by:
 - Generalized lymphadenopathy
 - Symmetric mucocutaneous maculopapular rash
 - On the face, trunk, and extremities including the palms of the hands and soles of feet
 - Also fever, malaise, and lymphadenitis

SYMPHILIS: Secondary Syphilis

- Lesions of the rash are teeming with spirochetes
- Extremely infectious
- Lesions usually resolve in a few days
 - 1/3 of cases take many weeks
 - If lesions disappear in a few days, latent syphilis develops
SYMPHIS:
Latent syphilis

- Can last for years
 - No clinical signs or symptoms but infection is continuing
- Latency can be interrupted by less severe bouts of secondary syphilis
 - Sexual transmission only possible during relapses
- Transmission from mother to fetus is possible throughout latent period

SYMPHIS:
Tertiary syphilis

- Occurs in about 1/3 of untreated patients
- Takes years to develop
 - Can be 5 years after the initial infection
 - Usually 15-20 years
- Characterized by appearance of gummas
 - Localized granulomatous lesions in skin, bones, joints, and internal organs
- Clinical findings depend on where the infection spreads
 - Cardiovascular system – cardiovascular syphilis
 - Nervous system – neurosyphilis

SYMPHIS:
Tertiary Syphilis

- Cardiovascular syphilis
 - Bacteria move to the vaso vasorum of the aorta
 - Causes necrosis, destruction of elasticity
 - Development of aneurisms
 - Aortic valvular incompetency
SYPHILIS:
Tertiary Syphilis

- Neurosyphilis is characterized by:
 - Meningovasculitis
 - Degenerative changes in any area of the body
- Most common symptoms are:
 - Chronic meningitis, fever, and headache
 - Increased cells and protein in the cerebrospinal fluid
 - Can also be cortical degeneration
- Cortical degeneration causes mental changes
 - Decreased memory, hallucinations, and psychoses

SYPHILIS:
Tertiary Syphilis

- Passed from mother to fetus
 - Only after 4th month of gestation
- Can have devastating consequences
 - Miscarriage
 - Changes to entire skeletal structure
 - Anemia, thrombocytopenia, and liver failure
- Mother must be treated before 4th month
SYPHILIS: Treatment

- *Treponema pallidum* is very sensitive to penicillin
 - Treatment of choice
 - Patients allergic to penicillin are treated with tetracycline, azithromycin, or cephalosporin
- Safe sex is effective for prevention

GONORRHEA

- Caused by *Neisseria gonorrhoeae*
 - Gram-negative diplococcus
 - Numerous pili
 - Grows well on chocolate agar
 - Also requires CO₂
 - Can change antigens from generation to generation
 - Antigenic variability also in pili
- Extensive genetic changes that occur in *N. gonorrhoeae*:
 - Allow pathogen to escape host defenses
 - Make it able to bind to variety of receptors
 - Maximize the potential for infection

Safe sex is effective for prevention.
GONORRHEA

- Reported cases represent only 50% of the actual number
 - Still a major public health problem
- Highest rates seen in young adults
 - Women aged 15-19
 - Men aged 20-24
- Major reservoir is asymptomatic patients
 - 50% are infectious
 - Infection rate can be 20-50% for sexual intercourse with a carrier

GONORRHEA: Pathogenesis – Attachment and invasion

- Bacterium have pili and adherence proteins
 - Used to attach to urethral and vaginal epithelium
 - Also attaches to sperm and parts of fallopian tubes
- Pathogen invades host epithelial cells
 - Microvilli of the epithelial cells escort it into cytoplasm

GONORRHEA: Pathogenesis – Attachment and invasion

- Invasion process called parasite-directed endocytosis
 - Initiated by the bacterium
 - Entry involves nonphagocytic cells
- Once inside host cell:
 - Transcytoses through cytoplasm
 - Exits through the basal membrane
GONORRHEA: Pathogenesis – Survival in submucosa

- Enters the submucosa and immediately exposed to the host defenses
- *Neisseria* has a variety of evasion mechanisms.
 - Blocks the deposition of C3 and shuts down complement
 - Surface proteins bind to antibodies and inhibit their bacteriocidal response
 - Blocked antibodies are found in patients with repeated gonococcal infections
 - Produces excess catalase and neutralizes oxidative killing part of phagocytosis

GONORRHEA: Spread and Dissemination

- Pathogens tend to stay localized in the genital structures
 - Facilitates transmission
 - Causes increased inflammation and localized tissue injury
- Purulent exudates are the infectious units
- Infection may spread to adjacent cells by progressive extension
 - Prostate, cervical glands, and fallopian tubes
 - Bacteria adhering to sperm can facilitate spread
- *Neisseria* can reach the blood and cause systemic infection

GONORRHEA: Clinical Manifestations

- Genital gonorrhea
 - Primarily in the urethra
 - Symptoms 2-7 days after infection
 - Purulent urethral discharge and dysuria
 - In men infection can spread to epididymis and prostate
 - In women can be abdominal pain and menstrual abnormalities
 - Symptoms can be mild or completely absent
GONORRHEA: Clinical Manifestations

- Pelvic inflammatory disease (PID)
 - Seen in 10-20% of women infected with Neisseria
 - Symptoms are caused by pathogen spreading along the fallopian tubes and into the pelvic cavity
 - Fever, bilateral abdominal tenderness, and leukocytosis
 - Salpingitis
 - Pelvic peritonitis and abscess formation
 - PID can have serious complications
 - Infertility and ectopic pregnancy

- Disseminated gonococcal infection can be caused by localized gonorrhea or PID
 - Clinical features
 - Fever, polyarthralgia, petechial maculopapular, or pustular rash
 - Some symptoms caused by the host response to bacteremia
 - Spread can lead to endocarditis or meningitis
 - Most commonly purulent arthritis

GONORRHEA: Treatment

- Patients who discontinue treatment early:
 - Continue to transmit the disease
 - Increase development of antibiotic resistance
- Resistance to penicillin has rendered this drug useless
- Third-generation cephalosporins are the best option
 - Fluoroquinolones, azithromycin, doxycycline are also effective
NON-GONOCCAL URETHRITIS
(CHLAMYDIA TRACHOMATIS)

- NGU is the most common sexually transmitted disease
- Caused by Chlamydia – a unique form of bacteria
 - Obligate intracellular
 - Round cell surrounded by an envelope
 - Do not contain peptidoglycan
 - One of the smallest genomes of all the prokaryotes
 - C. trachomatis most common species

NGU: Replication of Chlamydia

- Unique replication cycle involving two forms
 - Small, hardy, infectious form
 - Elementary body (EB)
 - Larger, more fragile, replicative form
 - Reticulate body (RB)

- EB attaches to unknown receptors
 - Enters the cell through endocytosis
- In the endocytic vesicle, EB converts to RB
- Endocytic vesicles do not fuse with lysosomes
 - Fuse with other endocytic vesicles carrying the pathogen
 - Number of Chlamydia in vacuole increases
- Endosome membrane expands by fusing with the lipids of the Golgi apparatus
NGU: Replication of Chlamydia

- Forms a large inclusion body
- Process reverses after 24-72 hours
 - RB form re-organizes and condenses to the EB form
 - Endosome membrane disintegrates or fuses with host cell membrane
 - Releases the EBs which infect new targets
- Forms a large inclusion body

<table>
<thead>
<tr>
<th>NGU: Pathogenesis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Humans are the only reservoir</td>
</tr>
<tr>
<td>Many infected men show no symptoms of the disease</td>
</tr>
<tr>
<td>Re-infection is a common occurrence</td>
</tr>
</tbody>
</table>
NGU: Pathogenesis

- *Chlamydia* has an affinity for:
 - Epithelial cells of the endocervix
 - Upper genital tract of women
 - Urethra and rectum of both men and women
- After infection, epithelial cells release pro-inflammatory cytokines
 - Tissue infiltration by polymorphonuclear leukocytes
 - Further infiltration by lymphocytes, macrophages, plasma cells, and eosinophils

NGU: Pathogenesis

- If infection not treated or failure in the immune response:
 - Aggregates of lymphocytes and macrophages form in the submucosa
 - Causes necrosis, fibrosis, and scarring
- NGU can become chronic

NGU: Pathogenesis

- Similar clinical sequelae to gonorrhea
 - Urethritis and epididymitis in men
 - Cervicitis, salpingitis, and urethritis in women
- Usually presents with dysuria and thin urethral discharge
- Infection of the cervix is usually asymptomatic
NGU: Treatment

- *Chlamydia* are sensitive to doxycycline, azithromycin, and some fluoroquinolones
- No vaccine against NGU

VIRAL INFECTIONS OF THE GENITOURINARY SYSTEM

- Most important viral infection is HIV
- Two other prominent viruses:
 - Herpes simplex type 2
 - Human papillomavirus

HERPES SIMPLEX VIRUS TYPE 2

- Two distinct epidemiological and antigenic types of herpes simplex virus
 - Herpes simplex virus type 1 (HSV-1)
 - Herpes simplex virus type 2 (HSV-2)
- DNA viruses linear double-stranded DNA
- Two types share many of the same antigens
 - 50% homology in genomes
HSV-2

- HSV-1 – above-the-waist
 - Causes cold sores
- HSV-2 – below-the-waist
 - Causes genital herpes
- HSV-2 distributed throughout the world
 - Humans are the only reservoir

 HSV-2

- Transmission is through direct contact with infected secretions
- Antibodies against HSV-1 found in large portion of the population
- Antibodies against HSV-2 are rarely seen before puberty

 HSV-2

- Many patients infected with HSV-2:
 - Are asymptomatic
 - Have small lesions that go unnoticed
- Shedding of virus occurs in asymptomatic patients
 - They can transmit the infection
- Estimated 1 million new cases each year in the US
HSV-2: Pathogenesis

- Two types of infection:
 - Acute
 - Latent

HSV-2: Pathogenesis

- Acute infection
 - Appearance of multinucleate giant cells
 - Ballooning degeneration of epithelial cells
 - Focal necrosis
 - Eosinophilic intraneural inclusion bodies
 - Inflammatory response

HSV-2: Pathogenesis

- Virus in an acute infection can spread:
 - Intraneuronally
 - Interneuronally
 - Through networks of axons or nerves
 - By cell-to-cell transfer
 - Inhibits the effects of circulating antibody
HSV-2: Pathogenesis

- Latent infection
 - Virus has been found in the sacral region (S2-S3)
 - Infection does not result in the death of neuron
 - Effects on host cell not understood
 - No synthesis of viral proteins
 - Most antiviral drugs do not eradicate latent infection

HSV-2: Pathogenesis

- Reactivation of latent virus accounts for most recurrent genital infections
- Mechanisms not yet known, but there are several precipitating factors:
 - Exposure to ultraviolet radiation
 - Fever
 - Trauma
- Genital herpes infections can be primary, recurrent, or neonatal

HSV-2: Primary Genital Herpes

- Relatively few people develop clinical symptoms
- Incubation time from sexual contact to onset of lesions is about 5 days
 - Lesions begin as small erythematous papules
 - Develop into vesicles
 - Then pustules on mucosal tissue
HSV-2: Primary Genital Herpes

- Within 3-5 days, lesions break to form painful coalesced ulcers
 - Some crust over before healing
 - All lesions crust over eventually
- Primary genital herpes lesions are usually multiple, bilateral, and extensive
 - Urethra and cervix can also be involved

Bilateral enlarged and tender lymph nodes in groin persist for weeks or even months
- One-third of patients show systemic symptoms
 - Fever, malaise, and myalgia
 - Some cases of aseptic meningitis
- First episodes last average of 12 days
HSV-2: Recurrent Genital Herpes

- Shorter duration than primary infection
 - Usually localized in genital region
 - Usual symptoms burning or prickly sensation in the pelvic area
 - Occur 12-24 hours before appearance of grouped vesicular lesions
 - Last 4-5 days
 - Lesions usually disappear in 2-5 days

HSV-2: Recurrent Genital Herpes

- 80% patients develop recurrent episodes
 - Median number of recurrences 4-5 per year
 - Recurrent viral shedding may occur without evidence of disease

HSV-2: Neonatal herpes infection

- Infections in newborn infants results from transmission during delivery
- Most cases associated with maternal primary infection at or near the time of delivery
 - Intense viral exposure to infant
- Very serious infection
 - Mortality rate of approximately 60%
HSV-2: Neonatal herpes infection

- Those infants that survive have severe difficulties
 - Abnormal nervous system function
 - Disseminated vesicular lesions
 - Necrosis of the liver, adrenal glands, listlessness, and seizures

HSV-2: Treatment

- Most effective and most commonly used is the nucleoside analog acyclovir
 - Decreases the duration of a primary infection
 - Can also suppress recurrent infections
- Foscarnet is effective for resistant HSV virions
- Can be prevented by avoiding contact with infected individuals expressing lesions
 - Important to remember virus still being shed in asymptomatic individuals
 - Can also be transmitted via saliva

HUMAN PAPILLOMAVIRUS (HPV)

- Papillomaviruses are small, non-enveloped, with double-stranded DNA and icosahedral symmetry
- Cause papillomas (benign tumors) or warts
 - Infections are species specific
 - Tumors can be malignant
HPV

- Wide genetic diversity among human papillomaviruses
 - Indicated by using numbers to identify different genotypes
 - More than 70 genotypes of HPV have been identified
 - Some are associated with specific lesions
- HPV genotypes identified cause genital hyperplastic epithelial lesions
 - Cervical, vulvar, and penile warts
- HPV genotypes are also associated with premalignant and malignant cervical cancer

HPV

- 12 HPV genotypes identified in human genital lesions
 - Many other genotypes cause silent infections
 - Possible to be infected with more than one genotype of HPV
 - Incidence of HPV infection is rising
 - 20-60% of women in the US are infected with one HPV genotype
 - Types 6 and 11 associated with benign genital warts in males and females
 - Types 16, 18, 31, and 45 cause warty lesions of vulva, cervix, and penis
 - Infections with any of these may progress to malignancy

HPV: Pathogenesis

- Papillomaviruses have a predilection for the junction of squamous and columnar epithelium
- Mechanism of malignant transformation not understood
 - Difficult to study because HPV is difficult to grow
HPV: Pathogenesis

- Viral genome can be found integrated into the host cell chromosome
 - Integration does not seem to be site-specific
- Host cells normally produce protein that inhibits expression of papillomavirus – transforming genes
 - HPV seems to inactivate that protein

HPV - Pathogenesis

- External genital HPV infection presents as genital warts
 - Often caused by genotypes 6 or 11
 - Lesions may grow to a cauliflower-like appearance during pregnancy or immunosuppression
- HPV infections usually benign
 - Many lesions reverse spontaneously
 - May become dysplastic
 - Proceed to severe dysplasia or carcinoma

- HPV infection can present as genital warts
 - Often caused by genotypes 6 or 11
 - Lesions may grow to a cauliflower-like appearance
 - During pregnancy or immunosuppression
- HPV infections are usually benign
 - Many lesions reverse spontaneously
 - May become dysplastic
 - Proceed to severe dysplasia or carcinoma
HPV:
Treatment

- Only treatments are surgical, cytotoxic drugs, and cryotherapy
- Recurrence is common after cessation of treatment
- A vaccine has recently become available

FUNGAL INFECTIONS OF THE GENITOURINARY SYSTEM

- Genitourinary system is exposed to many fungal organisms
- Infections are usually opportunistic
- Most prominent fungal infection is vaginal candidiasis
- Caused by Candida albicans

VAGINAL CANDIDIASIS (CANDIDA ALBICANS)

- Candida albicans part of the normal microbial flora
- In oropharyngeal and gastrointestinal regions in males and females, genital tract of females
- Can grow in multiple morphological forms
- Mainly seen as yeast
- Infection can be local or systemic
VAGINAL CANDIDIASIS (CANDIDA ALBICANS)

- Main symptoms are itching and a thick white discharge
- Infections are normally endogenous
 - Except in direct mucosal contact e.g. sexual intercourse
- Indwelling catheters and over-use of antibiotics
 - Additional opportunities to become opportunistically pathogenic

C. ALBICANS: Pathogenesis

- Part of the normal flora
 - Must undergo change to become pathogenic
 - One of the changes is appearance of hyphae
- Hyphae are seen when Candida invades tissues
 - Accompanied by production of several factors permitting strong attachment to host cells
 - Attachment involves usurping of host cell enzymes

C. ALBICANS: Pathogenesis

- Hyphae excrete proteases and phospholipases
 - Digest epithelial cells
 - Facilitate tissue invasion
- Candida binds to the C3 fragment of complement
 - Inhibits opsonization
C. ALBICANS: Pathogenesis

- *Candida* infection of the vagina produces a thick discharge
- Consistency of cottage cheese
- Accompanied by itching
- Small percentage of women become chronically infected
- Experience recurrent symptoms
- *Candida* can also infect urinary tract causing:
 - Cystitis, nephritis, abscesses, and expanding fungus ball lesions in the renal pelvis

C. ALBICANS: Treatment

- Usually susceptible to azole drugs, Amphotericin B, nystatin, and flucytosine
- In many cases lesions resolve spontaneously after elimination of predisposing conditions